Ferrous Iron Colorimetric Assay Kit Catalog No: E-BC-K773-M Method: Colorimetric method Specification: 96T (Can detect 80 samples without duplication) Instrument: Microplate reader Sensitivity: 0.4 µmol/L Detection range: 0.4-50 µmol/L Please kindly provide us the lot number (on the outside of the box) of the kit for more efficient service. # **General information** #### ▲ Intended use This kit can measure ferrous ions (Fe²⁺) content in serum, cells, animal and plant tissue samples. ## **▲** Background Iron is one of the metal elements in organism and has important physiological functions. Ferrous ion is a key element in heme and hemoglobin and plays an important role in many biochemical reactions. In recent years, with the introduction of the concept of iron death, it has been found that the absorption, transportation, storage and utilization of iron ions and their excessive accumulation in cells have a significant relationship with aging and disease. ## **▲** Detection principle Ferrous ions (Fe^{2*}) in samples can bind with probe to form complexes, which has a maximum absorption peak at 593 nm. The concentration of iron can be calculated by measuring the OD value at 593 nm indirectly. ## ▲ Kit components & storage | Item | Component | Specification | Storage | | |-----------|-------------------------|-----------------|---------------------------------|--| | Reagent 1 | Buffer Solution | 50 mL × 2 vials | 2-8°C , 6 months, shading light | | | Reagent 2 | Chromogenic Solution | 10 mL × 2 vials | 2-8°C , 6 months, shading light | | | Reagent 3 | 10 mmol/L Iron Standard | 1 mL × 2 vial | 2-8°C , 6 months, shading light | | | | Microplate | 96 wells | No requirement | | | | Plate Sealer | 2 pieces | | | Note: The reagents must be stored strictly according to the preservation conditions in the above table. The reagents in different kits cannot be mixed with each other. # ▲ Materials prepared by users # **Instruments** Test tubes, Vortex Mixer, Centrifuge, Water bath, Microplate reader (590-600 nm, optimum wavelength: 593 nm) ## Reagents: Double distilled water ## ▲ Safety data Some of the reagents in the kit contain dangerous substances. It should be avoided to touch the skin and clothing. Wash immediately with plenty of water if touching it carelessly. All the samples and waste material should be treated according to the relevant rules of laboratory's biosafety. ### **▲ Precautions** Before the experiment, please read the instructions carefully, and wear gloves and work clothes. ## ▲ The key points of the assay - 1. Prevent the formulation of bubbles when the reagent or sample is transferred into the microplate. - 2. Do not use iron appliances to prepare or transfer samples. # **Pre-assay preparation** ### ▲ Reagent preparation - 1. Bring all reagents to room temperature before use. - 2. Preparation of 100 µmol/L iron standard: Mix 20 µL of reagent 3 with 1980 µL of double distilled water fully. Prepare fresh needed amount solution before use. ## ▲ Sample preparation ### 1. Serum and plasma samples: Mix serum sample with reagent 1 at a ratio of 1:3 fully and preserve it on ice for detection. If the sample is turbidity, centrifuge at 5000 g for 5 min, then take the supernatant for detection. ### 2. Tissue sample: Accurately weigh the tissue, add reagent 1 at a ratio of Weight (g): Volume (mL) =1:9 and homogenize the sample in ice water bath. Then centrifuge at 10000 g for 10 min, then take the supernatant for detection. Meanwhile, determine the protein concentration of supernatant (E-BC-K318-M) ### 3. Cell sample: Collect the cells and wash the cells with PBS (0.01 M, pH 7.4) for 1~2 times Centrifuge at 1000 g for 10 min and then discard the supernatant and keep the cell sediment. Add homogenization medium at a ratio of cell number (4×10⁶): reagent 1 (μL) =1: 400. Sonicate or grind with hand-operated in ice water bath. Centrifuge at 10000 g for 10 min, then take the supernatant and preserve it on ice for detection. ## ▲ Dilution of sample It is recommended to take 2~3 samples with expected large difference to do pre-experiment before formal experiment and dilute the sample according to the result of the pre-experiment and the detection range (0.4-50 µmol/L). The recommended dilution factor for different samples is as follows (for reference only) | Sample type | Dilution factor | |--|-----------------| | Human serum | 1 | | Mouse serum | 1-2 | | Rat serum | 1 | | 10% Mouse liver tissue homogenate | 1-3 | | 10% Rat lung tissue homogenate | 1 | | 10% Mouse heart tissue homogenate | 1 | | 10% Rat spleen tissue homogenate | 1-3 | | 293T cells | 1 | | 10% Epipremnum aureum leaf tissue homogenate | 1 | Note: The diluent is reagent 1. | Assay protocol | | | | | |------------------------------|---------|--|--|--| | Ambient temperature | 25-30°C | | | | | Optimum detection wavelength | 593 nm | | | | ## Instructions for the use of transferpettor: - (1) Equilibrate the pipette tip in that reagent before pipetting each reagent. - (2) Don't add the liquid outside the tips into the reaction system when pipetting each reagent. # **Assay protocol** # ▲ Plate set up | | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | |---|---|---|----|-----|-----|-----|-----|-----|-----|-----|-----|-----| | Α | Α | Α | S1 | S9 | S17 | S25 | S33 | S41 | S49 | S57 | S65 | S73 | | В | В | В | S2 | S10 | S18 | S26 | S34 | S42 | S50 | S58 | S66 | S74 | | С | С | С | S3 | S11 | S19 | S27 | S35 | S43 | S51 | S59 | S67 | S75 | | D | D | D | S4 | S12 | S20 | S28 | S36 | S44 | S52 | S60 | S68 | S76 | | E | Е | Е | S5 | S13 | S21 | S29 | S37 | S45 | S53 | S61 | S69 | S77 | | F | F | F | S6 | S14 | S22 | S30 | S38 | S46 | S54 | S62 | S70 | S78 | | G | G | G | S7 | S15 | S23 | S31 | S39 | S47 | S55 | S63 | S71 | S79 | | Н | Н | Н | S8 | S16 | S24 | S32 | S40 | S48 | S56 | S64 | S72 | S80 | Note: A-H, standard wells; S1-S80, sample wells. ### **▲** Operating steps ### 1. The preparation of standard curve Dilute 100 µmol/L iron standard with reagent 1 to a serial concentration. The recommended dilution gradient is as follows: 0, 5, 10, 15, 20, 30, 40, 50 µmol/L. ### 2. The measurement of samples ### 2.1. For serum and plasma (1) Standard well: Take 200 µL of standard solution with different concentrations to the corresponding wells. Sample well: Take 200 µL of sample to the corresponding wells. - (2) Add 100 µL of reagent 2 to each well. - (3) Mix fully and incubate the tubes at 37°C for 10 min. - (4) Measure the OD value of each well with microplate reader at 593 nm. ### 2.2 For tissue and cells (1) Standard tube: Take 300 µL of standard solution with different concentrations to the 1.5 mL tubes. Sample tube: Take 300 µL of sample to the 1.5 mL tubes. - (2) Add 150 μL of reagent 2 into each tube. - (3) Mix fully with vortex mixer and incubate the tubes at 37°C for 10 min. - (4) Centrifuge the tubes at 12000 g for 10 min. - (5) Take 300 µL of supernatant to the corresponding microplate wells. - (6) Measure the OD value of each well with microplate reader at 593 nm. # **▲** Operation table ### 1. For serum and plasma | | Standard well | Sample well | |---|---------------|-------------| | Standard of different concentrations (µL) | 200 | | | Sample (µL) | | 200 | | Reagent 2 (µL) | 100 | 100 | Mix fully and incubate the tubes at 37°C for 10 min. Measure the OD value of each well with microplate reader at 593 nm. ### 2. For tissue and cells | | Standard tube | Sample tube | |---|---------------|-------------| | Standard of different concentrations (µL) | 300 | | | Sample (µL) | | 300 | | Reagent 2 (µL) | 150 | 150 | Mix fully with vortex mixer and incubate the tubes at 37°C for 10 min. Centrifuge the tubes at 12000 g for 10 min. Take 300 µL of supernatant to the corresponding microplate wells. Measure the OD value of each well with microplate reader at 593 nm. # ■ Flabscience® ■ ### ▲ Calculation Plot the standard curve by using OD value of standard and correspondent concentration as y-axis and x-axis respectively. Create the standard curve with graph software (or EXCEL). The concentration of the sample can be calculated according to the formula based on the OD value of sample. The standard curve is: v= ax + b. 1. Serum sample: Fe²⁺ content ($$\mu$$ mol/L) = (ΔA_{503} - b) ÷ a × 4* × f 2. Tissue sample: $$Fe^{2+}$$ content (µmol/gprot) = (ΔA_{593} - b) \div a × f \div C_{or} 3. Cell sample: $$Fe^{2+}$$ content (nmol/10⁶) = (ΔA_{E02} - b) \div a \div (N \div V) × f #### Note: - y: OD_{Standard} OD_{Blank} (OD_{Blank} is the OD value when the standard concentration is 0). - x: The concentration of Standard. - a: The slope of standard curve. - b: The intercept of standard curve. - ΔA₅₉₃: OD_{Sample} OD_{Blank} (OD_{Blank} is the OD value when the standard concentration is 0). - 4*: Dilution factor in the preparation step of serum, 4 times. - N: The number of cell sample. For example, the number of cells is 4*10⁶. N is 4. - V: The volume in the preparation step of cell, mL. - C_{pr}: Concentration of protein in sample, gprot/L. - f: Dilution factor of sample before tested. ### **▲ Notes** - 1. This kit is for research use only. - 2. Instructions should be followed strictly, changes of operation may result in unreliable results. - 3. The validity of kit is 6 months. - 4. Do not use components from different batches of kit. # **Appendix I Performance characteristics** | Appendix I Performance characteristics | | | | | | | |--|------------|----------------------------|-----|--|--|--| | Detection range 0.4-50 μmol/L Average intra-assay CV (%) | | | | | | | | Sensitivity | 0.4 µmol/L | Average inter-assay CV (%) | 1.5 | | | | | Average recovery rate (%) | 99 | | | | | | ## ▲ Example analysis For rat liver tissue, take 10% rat liver tissue homogenate and dilute for 2 times, and carry the assay according to the operation table. #### The results are as follows: standard curve: y = 0.0187 x - 0.0027, the average OD value of the sample is 0.320, the average OD value of the blank is 0.050, the concentration of protein in sample is 14.56 gprot/L, and the calculation result is: Fe²⁺ content ($$\mu$$ mol/gprot) = (0.320 - 0.050 + 0.0027) + 0.0187 × 2 ÷ 14.56 = 3.89 μ mol/gprot