SEA134Rb 96 Tests Enzyme-linked Immunosorbent Assay Kit For Tumor Necrosis Factor Beta (TNFb) Organism Species: Oryctolagus cuniculus (Rabbit) Instruction manual

FOR IN VITRO AND RESEARCH USE ONLY NOT FOR USE IN CLINICAL DIAGNOSTIC PROCEDURES

11th Edition (Revised in July, 2013)

[INTENDED USE]

The kit is a sandwich enzyme immunoassay for in vitro quantitative measurement of TNFb in rabbit serum, plasma and other biological fluids.

[REAGENTS AND MATERIALS PROVIDED]

Reagents	Quantity	Reagents	Quantity
Pre-coated, ready to use 96-well strip plate	1	Plate sealer for 96 wells	4
Standard	2	Standard Diluent	$1 \times 20 \mathrm{~mL}$
Detection Reagent A	$1 \times 120 \mu \mathrm{~L}$	Assay Diluent A	$1 \times 12 \mathrm{~mL}$
Detection Reagent B	$1 \times 120 \mu \mathrm{~L}$	Assay Diluent B	$1 \times 12 \mathrm{~mL}$
TMB Substrate	$1 \times 9 \mathrm{~mL}$	Stop Solution	$1 \times 6 \mathrm{~mL}$
Wash Buffer $(30 \times$ concentrate $)$	$1 \times 20 \mathrm{~mL}$	Instruction manual	1

[MATERIALS REQUIRED BUT NOT SUPPLIED]

1. Microplate reader with $450 \pm 10 \mathrm{~nm}$ filter.
2. Precision single or multi-channel pipettes and disposable tips.
3. Eppendorf Tubes for diluting samples.
4. Deionized or distilled water.
5. Absorbent paper for blotting the microtiter plate.
6. Container for Wash Solution

[STORAGE OF THE KITS]

1. For unopened kit: All the reagents should be kept according to the labels on vials. The Standard, Detection Reagent A, Detection Reagent B and the 96 -well strip plate should be stored at $-20^{\circ} \mathrm{C}$ upon receipt while the others should be at $4^{\circ} \mathrm{C}$.
2. For opened kit: When the kit is opened, the remaining reagents still need to be stored according to the above storage condition. Besides, please return the unused wells to the foil pouch containing the desiccant pack, and reseal along entire edge of zip-seal.

Note:

It is highly recommended to use the remaining reagents within 1 month provided this is within the expiration date of the kit. For the expiration date of the kit, please refer to the label on the kit box. All components are stable until this expiration date.

[SAMPLE COLLECTION AND STORAGE]

Serum - Allow samples to clot for two hours at room temperature or overnight at $4^{\circ} \mathrm{C}$ before centrifugation for 20 minutes at approximately $1000 \times$ g. Assay immediately or store samples in aliquot at $-20^{\circ} \mathrm{C}$ or $-80^{\circ} \mathrm{C}$. Avoid repeated freeze/thaw cycles.

Plasma - Collect plasma using EDTA or heparin as an anticoagulant. Centrifuge samples for 15 minutes at $1000 \times g$ within 30 minutes of collection. Remove plasma and assay immediately or store samples in aliquot at $-20^{\circ} \mathrm{C}$ or $-80^{\circ} \mathrm{C}$. Avoid repeated freeze/thaw cycles.

Other biological fluids - Centrifuge samples for 20 minutes at $1000 \times$ g. Remove particulates and assay immediately or store samples in aliquot at $-20^{\circ} \mathrm{C}$ or $-80^{\circ} \mathrm{C}$. Avoid repeated freeze/thaw cycles.

Note:

1. Samples to be used within 5 days may be stored at $4^{\circ} \mathrm{C}$, otherwise samples must be stored at $-20^{\circ} \mathrm{C}(\leqslant 1$ month) or $-80^{\circ} \mathrm{C}$ ($\leqslant 2$ months) to avoid loss of bioactivity and contamination.
2. Sample hemolysis will influence the result, so hemolytic specimen can not be detected.
3. When performing the assay, bring samples to room temperature.

[REAGENT PREPARATION]

1. Bring all kit components and samples to room temperature $\left(18-25^{\circ} \mathrm{C}\right)$ before use.
2. Standard - Reconstitute the Standard with 1.0 mL of Standard Diluent, kept for 10 minutes at room temperature, shake gently(not to foam). The concentration of the standard in the stock solution is $4,000 \mathrm{pg} / \mathrm{mL}$. Please firstly dilute the stock solution to $1,000 \mathrm{pg} / \mathrm{mL}$ and the diluted standard serves as the highest standard ($1,000 \mathrm{pg} / \mathrm{mL}$). Then prepare 7 tubes containing 0.5 mL Standard Diluent and use the diluted standard to produce a double dilution series according to the picture shown below. Mix each tube thoroughly before the next transfer. Set up 7 points of diluted standard such as $1,000 \mathrm{pg} / \mathrm{mL}, 500 \mathrm{pg} / \mathrm{mL}, 250 \mathrm{pg} / \mathrm{mL}$, $125 \mathrm{pg} / \mathrm{mL}, 62.5 \mathrm{pg} / \mathrm{mL}, 31.2 \mathrm{pg} / \mathrm{mL}, 15.6 \mathrm{pg} / \mathrm{mL}$, and the last EP tubes with Standard Diluent is the blank as $0 \mathrm{pg} / \mathrm{mL}$.

3. Detection Reagent \mathbf{A} and Detection Reagent \mathbf{B} - Briefly spin or centrifuge the stock Detection \mathbf{A} and Detection B before use. Dilute to the working concentration with Assay Diluent A and B, respectively (1:100).
4. Wash Solution - Dilute 20 mL of Wash Solution concentrate $(30 \times)$ with 580 mL of deionized or distilled water to prepare 600 mL of Wash Solution ($1 \times$).
5. TMB substrate - Aspirate the needed dosage of the solution with sterilized tips and do not dump the residual solution into the vial again.

Note:

1. Making serial dilution in the wells directly is not permitted.
2. Prepare standard within 15 minutes before assay. Please do not dissolve the reagents at $37^{\circ} \mathrm{C}$ directly.
3. Please carefully reconstitute Standards or working Detection Reagent A and B according to the instruction, and avoid foaming and mix gently until the crystals are completely dissolved. To minimize imprecision caused by pipetting, use small volumes and ensure that pipettors are calibrated. It is recommended to suck more than $10 \mu \mathrm{~L}$ for once pipetting.
4. The reconstituted Standards, Detection Reagent A and Detection Reagent B can be used only once.
5. If crystals have formed in the Wash Solution concentrate (30×), warm to room temperature and mix gently until the crystals are completely dissolved.
6. Contaminated water or container for reagent preparation will influence the detection result.

[SAMPLE PREPARATION]

1. Cloud-Clone Corp. is only responsible for the kit itself, but not for the samples consumed during the assay. The user should calculate the possible amount of the samples used in the whole test. Please reserve sufficient samples in advance.
2. Please predict the concentration before assaying. If values for these are not within the range of the standard curve, users must determine the optimal sample dilutions for their particular experiments.
3. If the samples are not indicated in the manual, a preliminary experiment to determine the validity of the kit is necessary.
4. Tissue or cell extraction samples prepared by chemical lysis buffer may cause unexpected ELISA results due to the impacts from certain chemicals.
5. Due to the possibility of mismatching between antigen from other origin and antibody used in our kits (e.g., antibody targets conformational epitope rather than linear epitope), some native or recombinant proteins from other manufacturers may not be recognized by our products.
6. Influenced by the factors including cell viability, cell number or sampling time, samples from cell culture supernatant may not be detected by the kit.
7. Fresh samples without long time storage is recommended for the test. Otherwise, protein degradation and denaturalization may occur in those samples and finally lead to wrong results.

[ASSAY PROCEDURE]

1. Determine wells for diluted standard, blank and sample. Prepare 7 wells for standard, 1 well for blank.

Add $100 \mu \mathrm{~L}$ each of dilutions of standard (read Reagent Preparation), blank and samples into the appropriate wells. Cover with the Plate sealer. Incubate for 2 hours at $37^{\circ} \mathrm{C}$.
2. Remove the liquid of each well, don't wash.
3. Add $100 \mu \mathrm{~L}$ of Detection Reagent A working solution to each well. Incubate for 1 hour at $37^{\circ} \mathrm{C}$ after covering it with the Plate sealer.
4. Aspirate the solution and wash with $350 \mu \mathrm{~L}$ of $1 \times$ Wash Solution to each well using a squirt bottle, multi-channel pipette, manifold dispenser or autowasher, and let it sit for $1 \sim 2$ minutes. Remove the remaining liquid from all wells completely by snapping the plate onto absorbent paper. Totally wash 3 times. After the last wash, remove any remaining Wash Buffer by aspirating or decanting. Invert the plate and blot it against absorbent paper.
5. Add $100 \mu \mathrm{~L}$ of Detection Reagent B working solution to each well. Incubate for 30 minutes at $37^{\circ} \mathrm{C}$ after covering it with the Plate sealer.
6. Repeat the aspiration/wash process for total 5 times as conducted in step 4.
7. Add $90 \mu \mathrm{~L}$ of Substrate Solution to each well. Cover with a new Plate sealer. Incubate for $15-25$ minutes at $37^{\circ} \mathrm{C}$ (Don't exceed 30 minutes). Protect from light. The liquid will turn blue by the addition of Substrate Solution.
8. Add $50 \mu \mathrm{~L}$ of Stop Solution to each well. The liquid will turn yellow by the addition of Stop solution. Mix the liquid by tapping the side of the plate. If color change does not appear uniform, gently tap the plate to ensure thorough mixing.
9. Remove any drop of water and fingerprint on the bottom of the plate and confirm there is no bubble on the surface of the liquid. Then, run the microplate reader and conduct measurement at 450 nm immediately.

Note:

1. Assay preparation: Keep appropriate numbers of wells for each experiment and remove extra wells from microplate. Rest wells should be resealed and stored at $-20^{\circ} \mathrm{C}$.
2. Samples or reagents addition: Please use the freshly prepared Standard. Please carefully add samples to wells and mix gently to avoid foaming. Do not touch the well wall. For each step in the procedure, total dispensing time for addition of reagents or samples to the assay plate should not exceed 10 minutes. This will ensure equal elapsed time for each pipetting step, without interruption. Duplication of all standards and specimens, although not required, is recommended. To avoid cross-contamination, change pipette tips between additions of standards, samples, and reagents. Also, use separated reservoirs for each reagent.
3. Incubation: To ensure accurate results, proper adhesion of plate sealers during incubation steps is necessary. Do not allow wells to sit uncovered for extended periods between incubation steps. Once reagents are added to the well strips, DO NOT let the strips DRY at any time during the assay. Incubation time and temperature must be controlled.
4. Washing: The wash procedure is critical. Complete removal of liquid at each step is essential for good performance. After the last wash, remove any remaining Wash Solution by aspirating or decanting and remove any drop of water and fingerprint on the bottom of the plate. Insufficient washing will result in poor precision and false elevated absorbance reading.
5. Controlling of reaction time: Observe the change of color after adding TMB Substrate (e.g. observation once every 10 minutes), if the color is too deep, add Stop Solution in advance to avoid excessively strong reaction which will result in inaccurate absorbance reading.
6. TMB Substrate is easily contaminated. Please protect it from light.
7. The environment humidity which is less than 60% might have some effects on the final performance, therefore, a humidifier is recommended to be used at that condition.

The microtiter plate provided in this kit has been pre-coated with an antibody specific to TNFb. Standards or samples are then added to the appropriate microtiter plate wells with a biotin-conjugated antibody specific to TNFb. Next, Avidin conjugated to Horseradish Peroxidase (HRP) is added to each microplate well and incubated. After TMB substrate solution is added, only those wells that contain TNFb, biotin-conjugated antibody and enzyme-conjugated Avidin will exhibit a change in color. The enzyme-substrate reaction is terminated by the addition of sulphuric acid solution and the color change is measured spectrophotometrically at a wavelength of $450 \mathrm{~nm} \pm 10 \mathrm{~nm}$. The concentration of TNFb in the samples is then determined by comparing the O.D. of the samples to the standard curve.

[CALCULATION OF RESULTS]

Average the duplicate readings for each standard, control, and samples and subtract the average zero standard optical density. Construct a standard curve by plotting the mean O.D. and concentration for each standard and draw a best fit curve through the points on the graph or create a standard curve on log-log graph paper with TNFb concentration on the y-axis and absorbance on the x-axis. Using some plot software, for instance, curve expert 1.30 , is also recommended. If samples have been diluted, the concentration read from the standard curve must be multiplied by the dilution factor.

[TYPICAL DATA]

In order to make the calculation easier, we plot the O.D. value of the standard (X -axis) against the known concentration of the standard (Y -axis), although concentration is the independent variable and O.D. value is the dependent variable. However, the O.D. values of the standard curve may vary according to the conditions of assay performance (e.g. operator, pipetting technique, washing technique or temperature effects), plotting log of the data to establish standard curve for each test is recommended. Typical standard curve below is provided for reference only.

Typical Standard Curve for TNFb, Rabbit ELISA.

[DETECTION RANGE]

$15.6-1,000 \mathrm{pg} / \mathrm{mL}$. The standard curve concentrations used for the ELISA's were $1,000 \mathrm{pg} / \mathrm{mL}, 500 \mathrm{pg} / \mathrm{mL}$,

[SENSITIVITY]

The minimum detectable dose of rabbit TNFb is typically less than $6.1 \mathrm{pg} / \mathrm{mL}$.
The sensitivity of this assay, or Lower Limit of Detection (LLD) was defined as the lowest protein concentration that could be differentiated from zero. It was determined by adding two standard deviations to the mean optical density value of twenty zero standard replicates and calculating the corresponding concentration.

[SPECIFICITY]

This assay has high sensitivity and excellent specificity for detection of TNFb.
No significant cross-reactivity or interference between TNFb and analogues was observed.

Note:

Limited by current skills and knowledge, it is impossible for us to complete the cross- reactivity detection between TNFb and all the analogues, therefore, cross reaction may still exist.

[RECOVERY]

Matrices listed below were spiked with certain level of recombinant TNFb and the recovery rates were calculated by comparing the measured value to the expected amount of TNFb in samples.

Matrix	Recovery range (\%)	Average(\%)
rabbit serum $(\mathrm{n}=5)$	$87-103$	95
rabbit EDTA plasma($\mathrm{n}=5$)	$85-96$	90

[LINEARITY]
The linearity of the kit was assayed by testing samples spiked with appropriate concentration of TNFb and their serial dilutions. The results were demonstrated by the percentage of calculated concentration to the expected.

Sample	$1: 2$	$1: 4$	$1: 8$	$1: 16$
rabbit serum $(\mathrm{n}=5)$	$91-101 \%$	$88-97 \%$	$95-102 \%$	$80-101 \%$
rabbit EDTA plasma $(\mathrm{n}=5)$	$92-104 \%$	$82-101 \%$	$98-105 \%$	$81-94 \%$

[PRECISION]

Intra-assay Precision (Precision within an assay): 3 samples with low, middle and high level TNFb were tested 20 times on one plate, respectively.
Inter-assay Precision (Precision between assays): 3 samples with low, middle and high level TNFb were tested on 3 different plates, 8 replicates in each plate.
CV(\%) = SD/meanX100
Intra-Assay: CV<10\%
Inter-Assay: CV<12\%

[STABILITY]

The stability of ELISA kit is determined by the loss rate of activity. The loss rate of this kit is less than 5% within the expiration date under appropriate storage condition.
To minimize extra influence on the performance, operation procedures and lab conditions, especially room temperature, air humidity, incubator temperature should be strictly controlled. It is also strongly suggested that the
whole assay is performed by the same operator from the beginning to the end.

[ASSAY PROCEDURE SUMMARY]

1. Prepare all reagents, samples and standards;
2. Add $100 \mu \mathrm{~L}$ standard or sample to each well. Incubate 2 hours at $37^{\circ} \mathrm{C}$;
3. Aspirate and add $100 \mu \mathrm{~L}$ prepared Detection Reagent A. Incubate 1 hour at $37^{\circ} \mathrm{C}$;
4. Aspirate and wash 3 times;
5. Add $100 \mu \mathrm{~L}$ prepared Detection Reagent B. Incubate 30 minutes at $37^{\circ} \mathrm{C}$;
6. Aspirate and wash 5 times;
7. Add $90 \mu \mathrm{~L}$ Substrate Solution. Incubate $15-25$ minutes at $37^{\circ} \mathrm{C}$;
8. Add $50 \mu \mathrm{~L}$ Stop Solution. Read at 450 nm immediately.

[IMPORTANT NOTE]

1. Limited by the current condition and scientific technology, we can't completely conduct the comprehensive identification and analysis on the raw material provided by suppliers. So there might be some qualitative and technical risks to use the kit.
2. The final experimental results will be closely related to validity of the products, operation skills of the end users and the experimental environments. Please make sure that sufficient samples are available.
3. Kits from different batches may be a little different in detection range, sensitivity and color developing time. Please perform the experiment exactly according to the instruction attached in kit while electronic ones from our website is only for information.
4. Do not mix or substitute reagents from one kit lot to another. Use only the reagents supplied by manufacturer.
5. Protect all reagents from strong light during storage and incubation. All the bottle caps of reagents should be covered tightly to prevent the evaporation and contamination of microorganism.
6. There may be some foggy substance in the wells when the plate is opened at the first time. It will not have any effect on the final assay results. Do not remove microtiter plate from the storage bag until needed.
7. Wrong operations during the reagents preparation and loading, as well as incorrect parameter setting for the plate reader may lead to incorrect results. A microplate plate reader with a bandwidth of 10 nm or less and an optical density range of 0-3 O.D. or greater at $450 \pm 10 \mathrm{~nm}$ wavelength is acceptable for use in absorbance measurement. Please read the instruction carefully and adjust the instrument prior to the experiment. For more information, please refer to the operation video (http://www.cloud-clone.us/homepage/operate.htm).
8. Even the same operator might get different results in two separate experiments. In order to get better reproducible results, the operation of every step in the assay should be controlled. Furthermore, a preliminary experiment before assay for each batch is recommended.
9. Each kit has been strictly passed Q.C test. However, results from end users might be inconsistent with our in-house data due to some unexpected transportation conditions or different lab equipments. Intra-assay variance among kits from different batches might arise from above factors, too.
10. Kits from different manufacturers with the same item might produce different results, since we haven't compared our products with other manufacturers.
11. The instruction manual also suits for the kit of 48T, but all reagents of 48 T kit are reduced by half.

[PRECAUTION]

The Stop Solution suggested for use with this kit is an acid solution. Wear eye, hand, face, and clothing protection when using this material.

[TROUBLE SHOOTING]

Problem	Possible Source	Correction Action
Poor Standard Curve	Improper standard curve preparation	Ensure accurate operation of the dilution
	Incomplete washing and aspiration	Adequate washing and adequate aspiration
	Inaccurate Pipetting	Check and Calibrate pipettes
Poor Precision	Incomplete washing of wells	Ensure sufficient washing
	Inadequate mixing and aspiration reagents	Adequate aspiration and mixing reagents
	Reused pipette tips, containers and sealers	Change and use new pipette tips, containers and sealers
	Inaccurate Pipetting	Check and Calibrate pipettes
Low O.D Values	Inadequate reagent volumes added to wells	Calibrate pipettes and Add adequate reagents
	Incorrect incubation times	Ensure sufficient incubation times
	Incorrect incubation temperature	Reagents balanced to room temperature
	Conjugate or substrate reagent failure	Mix conjugate \&substrate,color should develop immediately
	No stop solution added	Follow the assay protocol in the kit manual
	Read beyond suggested reading time	Read within the time recommended in the manual
Sample Values	Improper Sample Storage	Store the sample properly and use the fresh sample
	Improper sample collection and preparation	Take proper sample collection and preparation method
	Low quantity of analyte in samples	Use new sample and repeat assay

